155
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Parameter identification of linear multi-delay systems via a hybrid of block-pulse functions and Taylor’s polynomials

Pages 504-518 | Received 20 Jul 2015, Accepted 02 May 2016, Published online: 13 Jul 2016
 

ABSTRACT

In this paper, an efficient and effective procedure is successfully developed for parameter identification of linear time-invariant multi-delay systems. The proposed framework is based on a hybrid of block-pulse functions and Taylor’s polynomials. Two upper error bounds corresponding to hybrid functions are established. The excellent properties of these functions together with the associated operational matrices of integration and delay are utilised to transform the original problem into a system of linear algebraic equations. The least squares method is then implemented for estimation of the unknown parameters. Several numerical experiments are investigated to demonstrate the usefulness and effectiveness of the proposed procedure. Easy implementation, simple operations and accurate solutions are the main features of the suggested approximation scheme.

Acknowledgments

The author is very grateful to the reviewers for their useful comments and valuable suggestions that improved the paper.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.