370
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Finite time state and disturbance estimation for robust performance of motion control systems using sliding modes

&
Pages 1171-1182 | Received 29 Jan 2016, Accepted 20 Mar 2017, Published online: 11 Apr 2017
 

ABSTRACT

In this paper, simultaneous state and disturbance estimation of a drive system composed of motor connected to a load is proposed. Such a system is represented by a two mass model realising in a fourth-order plant. Backlash is introduced as the nonlinear disturbance in gears which is proposed to be estimated and in turn compensated. For this motion control system, a two-stage higher order sliding-mode observer is proposed for state and backlash estimation. The novelty lies in the fact that for this fourth-order system, output is considered from the motor end only, i.e. its angular displacement. The unmeasured states consisting of output derivative, load-side angular displacement and its derivative along with backlash are estimated in finite time. This disturbance due to backlash is unmatched in nature. The estimated states and disturbance are used to devise a robust sliding-mode control. This proposed scheme is validated in simulation and experimentation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.