174
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Fast nonlinear model predictive controller using parallel PSO based on divide and conquer approach

ORCID Icon &
Pages 2230-2239 | Received 09 Sep 2021, Accepted 05 Jun 2022, Published online: 22 Jun 2022
 

Abstract

The high computationally expensive nature of nonlinear optimisation algorithms leads to limitations of its use in a real-time era. So, this is the main challenge against researchers to develop a fast algorithm that is used in real-time computations. This paper proposes a fast nonlinear model predictive control algorithm that utilises a parallel particle swarm optimisation with synchronous and asynchronous methods inclusion, that handles nonlinear optimisation problems with constraints. The additional divide and conquer approach of the proposed algorithm improves the speed of computation and disturbance rejection capability which proves its efficacy in real-time applications. A highly nonlinear fast dynamic real-time inverted pendulum system with hybrid embedded hardware platform (ARM + FPGA) is used to validate the performance of this algorithm under constraints. The solution presented in the paper is computationally feasible for smaller sampling times i.e. in miliseconds and it gives promising results with synchronous and asynchonous parallel PSO compared to the state-of-art PSO algorithm.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.