85
Views
15
CrossRef citations to date
0
Altmetric
Electronic systems

Chaos, intermittency and control of bifurcation in a ZC2-DPLL

&
Pages 717-732 | Received 14 Jul 2008, Accepted 24 Jan 2009, Published online: 16 Jun 2009
 

Abstract

Nonlinear dynamics of a dual sampler-based zero crossing digital phase lock loop (ZC2-DPLL) has been investigated. Analysis supported by detailed numerical studies shows that the system enters a chaotic state through a cascade of period doubling bifurcation. The dynamics of the system have been quantified with the dynamical measures of Lyapunov exponent and correlation dimension. Further, it has been found that for certain system parameters intermittency occurs in the system. The occurrence of intermittency has been proved using the Pomeau–Manneville principle. The phenomenon of bifurcation control in a ZC2-DPLL using time delay feedback has been explored. It has been found that for some suitably chosen control parameters bifurcation phenomena can be controlled such that the stable locked zone of a bifurcation controlled ZC2-DPLL can be extended, which enhances the application potentiality of a ZC2-DPLL.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 702.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.