81
Views
1
CrossRef citations to date
0
Altmetric
Articles

Efficient recursive least squares parameter estimation algorithm for accurate nanoCMOS variable gain amplifier performances

, , &
Pages 659-682 | Received 19 Mar 2019, Accepted 15 Aug 2019, Published online: 30 Sep 2019
 

ABSTRACT

With the aggressive scaling of integrated circuit technology, parametric estimation is a critical task for designers who looked for solutions to the challenges of some Nanoscale CMOS parameters. This paper presented the prediction of primary parameters of CMOS transistor for 16 nm to 10 nm process nodes using both of Bisquare Weights (BW) method and a novel recursive least squares (RLS) parameter estimation algorithm. The proposed RLS algorithm consists of the minimisation of a quadratic criterion relating to the prediction error in order to attain the best estimated parameters of the developed mathematical model. The obtained results thanks to the proposed RLS algorithm were better than those reached using the BW method. Comparisons between Predictive Technology Model (PTM) data and parameters estimated with RLS algorithm were made to check the validity and the consistency of the proposed algorithm. These predicted primary parameters were helpful to estimate and to optimise the performances of the Variable Gain Amplifier (VGA) which was a basic circuit element with a key role in the design of new upcoming receivers.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 702.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.