96
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Increased susceptibility of mice obtained from in vitro fertilization to global cerebral ischemia-reperfusion injury: possible role of hydrogen sulphide and its biosynthetic enzymes

, , , &
Pages 533-540 | Received 25 Apr 2019, Accepted 07 Sep 2019, Published online: 17 Dec 2019
 

Abstract

Aim of the Study: This study was designed to explore the relative susceptibility of in vitro fertilization (IVF)-conceived mice to global cerebral ischemic injury with the possible role of hydrogen sulphide and enzymes responsible for its production.

Materials and Methods: IVF was carried to obtain pups, which were allowed to grow to the age of eight weeks. Thereafter, male mice were subjected to 20 min of global ischemia and 24 h of reperfusion. The mice obtained from other groups including normal mating, superovulation but normal mating and normal mating but embryo implantation were also subjected to global ischemia-reperfusion (I/R) injury.

Results: IVF-derived mice exhibited significant more injury in response to I/R injury in comparison to other groups assessed in terms of impairment in locomotor activity, development of motor in coordination, neurological severity score, cerebral infarction and apoptosis markers (caspase-3 activity and Bcl-2 expression). Moreover, there was a relative decrease in the brain levels of hydrogen sulphide (H2S) and its biosynthetic enzymes viz. cystathionine-β-synthase and cystathionine-γ-lyase. Interestingly, the levels of H2S and cystathionine-γ-lyase were significantly low in IVF-derived mice in basal conditions also, i.e. before subjecting to I/R injury and these biochemical alterations were associated with the behavioural deficits in mice, even before subjecting to I/R injury.

Conclusion: It is concluded that in vitro fertilization-derived mice are more susceptible to global cerebral I/R injury, which may be possibly due to decreased levels of hydrogen sulphide and its biosynthetic enzymes viz., cystathionine-β-synthase and cystathionine-γ-lyase.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.