122
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Silencing of PRDM5 increases cell proliferation and inhibits cell apoptosis in glioma

, , , , , , , & show all
Pages 144-153 | Received 16 May 2019, Accepted 11 Feb 2020, Published online: 05 Mar 2020
 

Abstract

Aim

PR-domain-containing 5 (PRDM5), a family member of PR-domain-containing zinc finger genes, has been reported to participate in modulate cellular processes, including cell growth, differentiation and apoptosis. It has also been found to function as a putative tumor suppressor in different types of cancer. The present study is the first, to the best of our knowledge, to report on the clinical significance of the expression of PRDM5 in glioma cell line.

Materials and Methods

Western blot analyse the expression of PRDM5 in glioma tissues and cells. 80 tissues microarray samples from patients with glioma were examined using immunohistochemical analysis. Glioblastoma U251 cells were transfected with PRDM5-siRNA and control-siRNA. U251cell proliferation was measured by flow cytometric analysis and plate colony formation assay. Cell apoptosis were detected using flow cytometric analysis.

Results

The results of western blot analysis and immunohistochemistry showed that the expression of PRDM5 was decreased in fresh glioma tissues, compared with that in normal brain tissues. Kaplan-Meier postoperative survival curves demonstrated that the low expression of PRDM5 was associated with poor prognosis in patients with glioma. In addition, suppression of PRDM5 promoted cell proliferation via regulating cell cycle progression. Finally, knocking down PRDM5 using small interfering RNA decreased the apoptosis of glioma cells.

Conclusion

Taken together, these findings suggested that PRDM5 may be a novel therapeutic target of glioma.

Acknowledgments

The sponsor had no role in the design or conduct of this research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.