116
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Protective effects of early exercise on neuroinflammation, and neurotoxicity associated by traumatic brain injury: a behavioral and neurochemical approach

, , , , , & show all
Pages 700-713 | Received 13 Jul 2022, Accepted 26 Sep 2022, Published online: 24 Nov 2022
 

Abstract

Objective

The benefits of exercise in TBI have been proven. However, the time-dependent effects of exercise initiation and the involved mechanisms are controversial. We investigated the effects of preconditioning, continuous, early, and delayed treadmill exercise on motor behavior, brain edema, inflammation, and oxidative stress in experimental traumatic brain injury (TBI).

Materials and Methods

48 male rats were assigned into two groups: sedentary control (Sham and TBI) and exercise groups: 1MB (preconditioning, initiation beginning at 1 month before trauma), 1MBA (continuous, initiation beginning at 1 month before and continuing 1 month after trauma), 24hA (early, initiation beginning at 24 h after trauma), and 1WA (delay, initiation beginning at 1 week after trauma). The rats in exercise groups were forced to run on a treadmill five days a week for 30 min per day. Rotarod and open file were used to assess motor behavior. ELISA was also used to measure total antioxidant capacity (TAC), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) in serum and CSF.

Results

Exercise significantly decreased neurological impairments, motor deficits, and apoptosis compared with the sedentary group. Early (within 24 h) and ongoing (1 MBA) exercise significantly improved motor behavior after TBI. In addition, these exercise programs inhibited brain edema and the number of apoptotic cells. MDA and TNF-α levels increased in all exercise groups, but the effects were greater after early exercise than after delayed exercise, resulting in a significant decrease in TAC levels in serum and CSF. We discovered a positive correlation between MDA, TAC, and TNF-α concentration in serum and CSF.

Conclusion

Our finding suggests that early exercise (24hA) and 1MBA groups afford neuroprotection and reduce the second injury consequence, probably by reducing neuronal apoptosis and oxidative stress.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability statement

Data will be made available on reasonable request.

Table 1. The changes of histopathological factors in Cortex.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.