71
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Modelling and performance of distributed algorithm for scheduling dissimilar machines with set-up

&
Pages 4357-4382 | Published online: 08 Jun 2010
 

Abstract

Distributed arrival time control is a highly decentralized scheduling approach where each part entity autonomously controls its arrival time to meet the due-date in real time. This paper presents differential equation-based models for distributed arrival time control of parallel dissimilar machines including sequence-dependent set-up and flowshop scheduling. The main objective was to show that the behaviour of general systems under distributed arrival time control was predictable. Convergence properties of the resulting nonlinear systems were established using the theory of discontinuous differential equations. Geometry was used to gain insight into the behaviour of these nonlinear systems. An approximation model was proposed for mean arrival times when the dynamics resulted in a non-unique steady-state. The model was tested using numerical simulation and agreed well. Geometric insights were also used to investigate scheduling performance of distributed arrival time control. Simulation results indicated that distributed arrival time control could provide significant improvement, typically more than 20%, over commonly used dispatching rules for due-date-based measures. Improved predictability and favourable performance made distributed arrival time control an attractive approach for decentralized control of Just-In-Time production.

Acknowledgements

This work was partially supported by the National Science Foundation Grant DMI-9908267 and the Ben Franklin Technology Partner through the Center for Manufacturing Enterprise Integration at Penn State University.

Notes

For the case with pi1<pj2 for i = 1, … , 3, j = 1, … , 3, i ≠ j.

*p(i, j) denotes the processing time of part i on machine j

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.