195
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Guided genetic algorithms for solving a larger constraint assembly problem

Pages 601-625 | Received 01 Jun 2005, Published online: 22 Feb 2007
 

Abstract

Assembly planning calls for the subtle consideration of certain limitation factors such as geometric features and tools so as to work out a specific assembly sequence. From the assembly sequence, all parts will be turned into a product. It is evident that the degree of complexity of the assembly problem will increase when the number of constraints is larger. Using Genetic Algorithms (GAs) to solve the assembly sequence features speed and flexibility can fit the requirements of various domains. In the case of larger constraint assembly problems, however, GAs will generate a large number of infeasible solutions in the evolution procedure, thus reducing the efficiency of the solution-searching process. Traditionally, using GAs is a random and blind-searching procedure in which it is not always the case that the offspring obtained through the evolutionary mechanism will meet the requirements of all limitations. In this study, therefore, Guided-GAs are proposed wherein the proper initial population and the alternation of crossover and mutation mechanisms are covered to overcome assembly planning problems that contain large constraints. The optimal assembly sequence is obtained through the combination of Guided-GAs and the Connector-based assembly planning context as previously suggested. Finally, practical examples are offered to illustrate the feasibility of Guided-GAs. It is found that Guided-GAs can effectively solve the assembly planning problem of larger constraints.

Acknowledgements

Research was supported by the National Science Council of the Republic of China under Grant Number NSC 93-2213-E-167-023.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.