337
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective optimization of manufacturing cell design

Pages 4855-4875 | Received 01 Feb 2006, Published online: 22 Feb 2007
 

Abstract

Whereas the single-objective cell-formation problem has been studied extensively during the past decades, research on the multi-objective version of the problem has been relatively limited, despite the fact that it represents a more realistic modelling of the manufacturing environment. This article introduces multi-objective GP-SLCA, an evolutionary computation methodology for the solution of the multi-objective cell-formation problem. GP-SLCA is a hybrid algorithm, comprising of GP-SLCA, a genetic programming algorithm for the solution of single-objective cell-formation problems, and NSGA-II, a standard evolutionary multi-objective optimization technique. The proposed methodology is capable of providing the decision maker with a range of non-dominated solutions instead of a single compromise solution, which is usually produced as an outcome of alternative multi-objective optimization techniques. The application of multi-objective GP-SLCA is illustrated on a large-sized test problem taken from the literature.

Acknowledgements

The author would like to thank the reviewers for their constructive comments that helped to improve the quality of the initial manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.