388
Views
75
CrossRef citations to date
0
Altmetric
Original Articles

Particle swarm optimization and differential evolution for the single machine total weighted tardiness problem

, , &
Pages 4737-4754 | Received 01 Feb 2006, Published online: 22 Feb 2007
 

Abstract

In this paper we present two recent metaheuristics, particle swarm optimization and differential evolution algorithms, to solve the single machine total weighted tardiness problem, which is a typical discrete combinatorial optimization problem. Most of the literature on both algorithms is concerned with continuous optimization problems, while a few deal with discrete combinatorial optimization problems. A heuristic rule, the smallest position value (SPV) rule, borrowed from the random key representation in genetic algorithms, is developed to enable the continuous particle swarm optimization and differential evolution algorithms to be applied to all permutation types of discrete combinatorial optimization problems. The performance of these two recent population based algorithms is evaluated on widely used benchmarks from the OR library. The computational results show that both algorithms show promise in solving permutation problems. In addition, a simple but very efficient local search method based on the variable neighbourhood search (VNS) is embedded in both algorithms to improve the solution quality and the computational efficiency. Ultimately, all the best known or optimal solutions of instances are found by the VNS version of both algorithms.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.