217
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Development of a highly efficient and resistant robust design

, &
Pages 157-167 | Received 01 Jan 2006, Published online: 14 Oct 2010
 

Abstract

Robust design uses the ordinary least squares method to obtain adequate response functions for the process mean and variance by assuming that experimental data are normally distributed and that there is no major contamination in the data set. Under these assumptions, the sample mean and variance are often used to estimate the process mean and variance. In practice, the above assumptions are not always satisfied. When these assumptions are violated, one can alternatively use the sample median and median absolute deviation to estimate the process mean and variance. However, the median and median absolute deviation both suffer from a lack of efficiency under the normal distribution, although they are fairly outlier-resistant. To remedy this problem, we propose new robust design methods based on a highly efficient and outlier-resistant estimator. Numerical studies substantiate the new methods developed and compare the performance of the proposed methods with the ordinary dual-response robust design.

Acknowledgement

This research was supported by Korea Research Foundation grant KRF-2002-003-D00009. The computational work of this research was performed while Dr. Park was visiting the School of Mechanical & Automotive Engineering, Inje University, South Korea. The authors are grateful to Dr. Mark Leeds for his valuable comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.