165
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A new algorithm for minimizing surplus parts in selective assembly by using genetic algorithm

, &
Pages 4793-4822 | Received 25 Oct 2005, Accepted 25 Feb 2006, Published online: 31 Aug 2007
 

Abstract

Precision assemblies are produced from low precision subcomponents by partitioning and assembling them randomly from their corresponding groups. Surplus part is one of the important issues, which reduces the implementation of selective assembly in real situations. A new algorithm is introduced in this present paper to reduce surplus parts almost to zero and it is achieved in two stages by using a genetic algorithm. For demonstrating the proposed algorithm, a gearbox shaft assembly is considered as an example problem in which the shaft and pulley are manufactured in wider tolerance and partitioned in three to nine bins. The surplus parts are divided into three bins equally and a best combination of groups is obtained for both cases. It is observed that nearly 995 assemblies are produced out of one thousand subcomponents with the manufacturing cost savings of 19.5% for T max and 992 assemblies are produced with 13.5% saving in manufacturing cost for 0.9T max.

Notes

† Dimensions and tolerances—inches, cost—American dollars.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.