354
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Tool path modification for optimized pocket milling

Pages 5715-5729 | Received 01 Jun 2006, Published online: 13 Nov 2007
 

Abstract

Many operations in CNC milling tasks are performed using pocket milling which has two main types of tool path trajectories, contour parallel path and direction parallel path. Hence there have been a lot of works on geometrically efficient algorithms to generate tool paths. Although the conventional tool path obtained from geometric information has been successful to make a desirable shape, it seldom considers physical process concerns like cutting forces and chatters. In order to cope with these problems, an optimized tool path, which maintains as constant MRR as possible in order to achieve constant cutting forces and to avoid chatter vibrations at all time, is introduced and the result is verified. Additional tool path segments are appended to the basic tool path obtained by geometric shape by using a pixel-based simulation technique. The algorithm has been implemented for two-dimensional contiguous end milling operations, and cutting tests are conducted by measuring spindle current, which reflects machining situations, to verify the significance of the proposed method.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.