353
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Scheduling in robotic cells: process flexibility and cell layout

, &
Pages 2105-2121 | Received 01 Feb 2006, Published online: 19 Feb 2008
 

Abstract

The focus of this study is the identical parts robotic cell scheduling problem with m machines under the assumption of process and operational flexibility. A direct consequence of this assumption is a new robot move cycle that has been overlooked in the existing literature. We prove that this new cycle dominates all classical robot move cycles considered in the literature for m = 2. We also prove that changing the layout from an in-line robotic cell to a robot-centered cell reduces the cycle time of the proposed cycle even further, whereas the cycle times of all other cycles remain the same. For the m-machine case, we find the regions where the proposed cycle dominates the classical robot move cycles, and for the remaining regions present its worst case performance with respect to classical robot move cycles. Considering the number of machines as a decision variable, we also find the optimal number of machines that minimizes the cycle time of the proposed cycle.

Acknowledgement

The authors would like to thank Professor Gerd Finke of Laboratory Leibniz, IMAG, France, and the anonymous reviewers for their helpful comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.