134
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A fitness differential adaptive parameter controlled evolutionary algorithm with application to the design structure matrix

&
Pages 5043-5057 | Received 01 Mar 2007, Published online: 02 Sep 2008
 

Abstract

This paper investigates a methodology for adaptation of the mutation factor within an evolutionary algorithm by means of measuring the improvement differential between successive generations. When no improvement is obtained in an evolutionary algorithm and it has not located the global optimum, it is an indication that the algorithm may have become trapped within a local minimum or maximum. Mutation is a tool within the algorithm that is designed to assist in escaping from these local extremes. It is therefore the premise of this paper that if the preset value for mutation probability is proving insufficient to release the algorithm from entrapment in a local minima or maxima, then a temporary increase in this mutation probability may assist in freeing the algorithm and therefore increasing its chances of ultimately converging on a global optimum. In order to determine when to implement the increase in mutation probability our algorithm measures the fitness improvement between successive generations in the algorithm. When no improvement is detected for a number of successive generations the probability is increased. The design structure matrix (DSM), a scheduling tool that has previously been optimized via the application of evolutionary algorithms, has been used as a practical implementation of differential adaptation to investigate its effectiveness in solving real world problems. Solutions provided by Todd, D. (Multiple criteria genetic algorithms in engineering design and operation, PhD thesis, Department of Marine Technology, University of Newcastle, 1997), are used to benchmark the algorithm's effectiveness.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.