560
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Workload control release mechanisms: from practice back to theory building

, &
Pages 3593-3617 | Received 11 Jul 2008, Accepted 24 Mar 2009, Published online: 03 Jun 2009
 

Abstract

Much Workload Control research has focussed on the order release stage but failed to address practical considerations that impact practical application. Order release mechanisms have been developed through simulations that neglect job size variation effects while empirical evidence suggests groups of small/large jobs are often found in practice. When job sizes vary, it is difficult to release all jobs effectively—small jobs favour a short period between releases and a tight workload bounding while large jobs require a longer period between releases and a slacker workload bounding. This paper represents a return from a case study setting to theory building. Through simulation, the impact of job sizes on overall performance is explored using all three aggregate load approaches. Options tested include: using distinct load capacities for small/large jobs and prioritising based on job size or routing length. Results suggest the best solution is assigning priority based on routing length; this improved performance, especially for large jobs, and allowed a short release period to be applied, as favoured by small jobs. These ideas have also been applied to a second practical problem: how to handle rush orders. Again, prioritisation, given to rush orders, leads to the best overall shop performance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.