399
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

An adaptive genetic algorithm approach for the mixed-model assembly line sequencing problem

&
Pages 5157-5179 | Received 30 Dec 2008, Accepted 08 Jun 2009, Published online: 27 Oct 2009
 

Abstract

A mixed-model assembly line (MMAL) is a type of production line that is capable of producing a variety of different product models simultaneously and continuously. The design and planning of such lines involve several long- and short-term problems. Among these problems, determining the sequence of products to be produced has received considerable attention from researchers. This problem is known as the Mixed-Model Assembly Line Sequencing Problem (MMALSP). This paper proposes an adaptive genetic algorithm approach to solve MMALSP where multiple objectives such as variation in part consumption rates, total utility work and setup costs are considered simultaneously. The proposed approach integrates an adaptive parameter control (APC) mechanism into a multi-objective genetic algorithm in order to improve the exploration and exploitation capabilities of the algorithm. The APC mechanism decides the probability of mutation and the elites that will be preserved for succeeding generations, all based on the feedback obtained during the run of the algorithm. Experimental results show that the proposed adaptive GA-based approach outperforms the non-adaptive algorithm in both solution quantity and quality.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.