216
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Combining neural networks and genetic algorithms for optimising the parameter design of the inter-metal dielectric process

&
Pages 1905-1916 | Received 01 Apr 2010, Accepted 01 Jan 2011, Published online: 04 Aug 2011
 

Abstract

An inter-metal dielectric (IMD) is deposited between metal layers to provide isolation capability to a device and separate the different metal layers that are unnecessary in the conduction of electricity. Owing to the complicated input/response relationships of the IMD process, the void problem results in electric leakage and causes wafer scraping. In the current study, we combined neural networks, genetic algorithms (GAs) and the desirability function in order to optimise the parameter settings of the IMD process. Initially, a backpropagation (BP) neural network was developed to map the complex non-linear relationship between the process parameters and the corresponding responses. Moreover, the desirability function and GAs were employed to obtain the optimum operating parameters in respect to each response. The implementation of the proposed approach was carried out in a semiconductor manufacturing company in Taiwan, and the results illustrate the practicability of the proposed approach.

Acknowledgements

The authors would like to thank Dr. Chao-Ton Su, chair professor of the National Tsing Hua University (Taiwan), for his full assistance. We also wish to thank the reviewers of IJPR for their positive comments on this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.