416
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A novel statistical tolerance analysis method for assembled parts

&
Pages 3498-3513 | Received 16 Sep 2010, Accepted 12 May 2011, Published online: 31 Jan 2012
 

Abstract

Tolerance analysis of an assembly is an important issue for mechanical design. Among various tolerance analysis methods, statistical analysis is the most commonly employed method. However, the conventional statistical tolerance method is often based on the normal distribution. It fails to predict the resultant tolerance of an assembly of parts with non-normal distributions. In this paper, a novel method based on statistical moments is proposed. Tolerance distributions of parts are first transferred into statistical moments that are then used for computing tolerance stack-up. The computed moments, particularly the variance, the skewness and the kurtosis, are then mapped back to probability distributions in order to calculate the resultant tolerance of the assembly. The proposed method can be used to analyse the resultant tolerance specification for non-normal distributions with different skewness and kurtosis. Simulated results showed that tail coefficients of different distributions with the same kurtosis are close to each other for normalised probabilities between −3 and 3. That is, the tail coefficients of a statistical distribution can be predicted by the coefficients of skewness and kurtosis. Two examples are illustrated in the paper to demonstrate the proposed method. The predicted resultant tolerances of the two examples are only 0.5% and 1.5% differences compared with that by the Monte Carlo simulation for 1,000,000 samples. The proposed method is much faster in computation with higher accuracy than conventional statistical tolerance methods. The merit of the proposed method is that the computation is fast and comparatively accurate for both symmetrical and unsymmetrical distributions, particularly when the required probability is between ±2σ and ±3σ.

Acknowledgments

The authors want to express their gratefulness for research support from the National Science Council, Taiwan under contract NSC98-2221-E-005-020, with additional funding from the Mechanical Industrial Research Laboratories of the Industrial Technology Research Institute, Taiwan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.