831
Views
66
CrossRef citations to date
0
Altmetric
Articles

Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method

&
Pages 1495-1508 | Received 21 Apr 2013, Accepted 21 Aug 2013, Published online: 22 Oct 2013
 

Abstract

This paper investigates an integrated bi-objective optimisation problem with non-resumable jobs for production scheduling and preventive maintenance in a two-stage hybrid flow shop with one machine on the first stage and m identical parallel machines on the second stage. Sequence-dependent set-up times and preventive maintenance (PM) on the first stage machine are considered. The scheduling objectives are to minimise the unavailability of the first stage machine and to minimise the makespan simultaneously. To solve this integrated problem, three decisions have to be made: determine the processing sequence of jobs on the first stage machine, determine whether or not to perform PM activity just after each job, and specify the processing machine of each job on the second stage. Due to the complexity of the problem, a multi-objective tabu search (MOTS) method is adapted with the implementation details. The method generates non-dominated solutions with several parallel tabu lists and Pareto dominance concept. The performance of the method is compared with that of a well-known multi-objective genetic algorithm, in terms of standard multi-objective metrics. Computational results show that the proposed MOTS yields a better approximation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.