345
Views
7
CrossRef citations to date
0
Altmetric
Articles

An enhanced model for SDBR in a random reentrant flow shop environment

&
Pages 1808-1826 | Received 03 May 2012, Accepted 04 Sep 2013, Published online: 23 Oct 2013
 

Abstract

This study proposed an enhanced simplified drum-buffer-rope (SDBR) model to be applied in a reentrant flow shop (RFS) in which job processing times are generated from a discrete uniform distribution and machine breakdowns are subject to an exponential distribution. In this enhanced SDBR model, the due-date assignment method, order release rule and dispatching rule were improved. The due dates and release dates of orders were determined by considering the total planned load of the capacity-constrained resource (CCR) in a random RFS. The deviation rate of buffer status is used as a dispatching rule to eliminate the influence of machine breakdowns. Simulations based on a real case company are used to evaluate the effective of the proposed model. The experimental results showed that our approach yields better performance than the other methods in terms of six due-date-related indexes when the product mix is with a large proportion of multi-reentrant orders and when the utilisation of CCR increases from 60 to 90%.

Acknowledgements

This research was partially supported by the National Science Council of Taiwan under Grants NSC 101-2410-H-009-005-MY2. The authors also want to thank the two anonymous reviewers for their valuable comments to this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.