291
Views
16
CrossRef citations to date
0
Altmetric
Articles

Scheduling rotationally arranged robotic cells served by a multi-function robot

, &
Pages 4037-4058 | Received 03 May 2013, Accepted 07 Jan 2014, Published online: 19 Feb 2014
 

Abstract

Automated material handling systems are usually characterised by robotic cells that result in the improvement of the production rate. The main purpose of this research is to study the scheduling of a rotationally arranged robotic cell with the multi-function robot (MFR). This special class of industrial robot is able not only to transfer the part between two adjacent processing stages but also to perform a special operation in transit. Considering MFR for material handling and operation, the objective function of the research here is the maximisation of production rate, or equivalently the minimisation of the steady-state cycle time for identical part production. This problem is modelled as a travelling salesman problem to give computational benefits with respect to the existing solution methods. Then, the lower bound for the cycle time is deduced in order to measure the productivity gain of two practical production permutations, namely uphill and downhill permutations. As a design problem, a preliminary analysis initially identifies the regions where the productivity gain of a regular multi-function robotic cell is more than that of the corresponding single-function robotic cell for both small- and large-scale cells. The conclusion shows the suggested topics for future research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.