300
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Development and evaluation of a rolling horizon purchasing policy for cores

Pages 2780-2790 | Received 30 Apr 2015, Accepted 10 Jan 2016, Published online: 05 Feb 2016
 

Abstract

A number of companies utilise end-of-use products (i.e. cores) for remanufacturing or recycling. An adequate supply of cores is needed for such activities. Establishing a purchasing policy for cores, over a finite planning horizon, requires multi-step ahead forecasts. Such forecasts are complicated by the fact that the number of cores in any future period depends upon previous sales and recent returns of the product. Distributed lag models have been used to capture this dependency for single-period ahead forecasts. We develop an approach to use distributed lag models to make multi-period ahead forecasts of net demand (i.e. demand minus returns), and investigate the cost implications, at a prescribed service level, of using such forecasts to purchase cores on a rolling horizon basis. Our results indicate that the effects of errors in the sales forecasts are negligible if sales follow an autoregressive pattern but are substantial when sales are more random. Dynamic estimation of the parameters in a rolling horizon environment yielded the most cost savings at high prescribed service levels (i.e. >0.95). Collectively, our results demonstrate the conditions in which companies can best leverage the dynamic nature of distributed lag models to reduce the acquisition costs over a finite horizon.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.