769
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Uncertainty quantification in dynamic system risk assessment: a new approach with randomness and fuzzy theory

&
Pages 5862-5885 | Received 10 Nov 2015, Accepted 13 Apr 2016, Published online: 13 May 2016
 

Abstract

Quantifying uncertainty during risk analysis has become an important part of effective decision-making and health risk assessment. However, most risk assessment studies struggle with uncertainty analysis and yet uncertainty with respect to model parameter values is of primary importance. Capturing uncertainty in risk assessment is vital in order to perform a sound risk analysis. In this paper, an approach to uncertainty analysis based on the fuzzy set theory and the Monte Carlo simulation is proposed. The question then arises as to how these two modes of representation of uncertainty can be combined for the purpose of estimating risk. The proposed method is applied to a propylene oxide polymerisation reactor. It takes into account both stochastic and epistemic uncertainties in the risk calculation. This study explores areas where random and fuzzy logic models may be applied to improve risk assessment in industrial plants with a dynamic system (change over time). It discusses the methodology and the process involved when using random and fuzzy logic systems for risk management.

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.