1,141
Views
51
CrossRef citations to date
0
Altmetric
Special Issue: Warehouse Design and Management

Order picking problems under weight, fragility and category constraints

, , &
Pages 6361-6379 | Received 28 Sep 2015, Accepted 10 Jun 2016, Published online: 27 Oct 2016
 

Abstract

Warehouse order picking activities are among the ones that impact the most the bottom lines of warehouses. They are known to often account for more than half of the total warehousing costs. New practices and innovations generate new challenges for managers and open new research avenues. Many practical constraints arising in real-life have often been neglected in the scientific literature. We introduce, model and solve a rich order picking problem under weight, fragility and category constraints, motivated by our observation of a real-life application arising in the grocery retail industry. This difficult warehousing problem combines complex picking and routing decisions under the objective of minimising the distance travelled. We first provide a full description of the warehouse design which enables us to algebraically compute the distances between all pairs of products. We then propose two distinct mathematical models to formulate the problem. We develop five heuristic methods, including extensions of the classical largest gap, mid-point, S-shape and combined heuristics. The fifth one is an implementation of the powerful adaptive large neighbourhood search algorithm specifically designed for the problem at hand. We then implement a branch-and-cut algorithm and cutting planes to solve the two formulations. The performance of the proposed solution methods is assessed on a newly generated and realistic test bed containing up to 100 pickups and 7 aisles. We compare the bounds provided by the two formulations. Our in-depth analysis shows which formulation tends to perform better. Extensive computational experiments confirm the efficiency of the ALNS metaheuristic and derive some important insights for managing order picking in this kind of warehouses.

Acknowledgements

We also thank Calcul Québec for providing computing facilities. We thank an associate editor and two anonymous referees for their comments on an earlier version of this paper.

Notes

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was partly supported by [grant numbers 2014-05764], [grant numbers 0172633] from the Canadian Natural Sciences and Engineering Research Council. This support is gratefully acknowledged. We also thank Calcul Québec for providing computing facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.