753
Views
80
CrossRef citations to date
0
Altmetric
Articles

A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation

ORCID Icon, &
Pages 7354-7374 | Received 30 Jun 2017, Accepted 24 Apr 2018, Published online: 14 May 2018
 

Abstract

The safety hazards existing in the process of disassembling waste products pose potential harms to the physical and mental health of the workers. In this article, these hazards involved in the disassembly operations are evaluated and taken into consideration in a disassembly line balancing problem. A multi-objective mathematical model is constructed to minimise the number of workstations, maximise the smoothing rate and minimise the average maximum hazard involved in the disassembly line. Subsequently, a Pareto firefly algorithm is proposed to solve the problem. The random key encoding method based on the smallest position rule is used to adapt the firefly algorithm to tackle the discrete optimisation problem of the disassembly line balancing. To avoid the search being trapped in a local optimum, a random perturbation strategy based on a swap operation is performed on the non-inferior solutions. The validity of the proposed algorithm is tested by comparing with two other algorithms in the existing literature using a 25-task phone disassembly case. Finally, the proposed algorithm is applied to solve a refrigerator disassembly line problem based on the field investigation and a comparison of the proposed Pareto firefly algorithm with another multi-objective firefly algorithm in the existing literature is performed to further identify the superior performance of the proposed Pareto firefly algorithm, and eight Pareto optimal solutions are obtained for decision makers to make a decision.

Additional information

Funding

This research was supported by the National Natural Science Foundation of China [grant number 51205328, 51405403]; and the Youth Foundation for Humanities and Social Sciences of Ministry of Education of China [grant number 12YJCZH296].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.