961
Views
32
CrossRef citations to date
0
Altmetric
Articles

A realistic multi-manned five-sided mixed-model assembly line balancing and scheduling problem with moving workers and limited workspace

, &
Pages 643-661 | Received 14 Dec 2016, Accepted 25 Apr 2018, Published online: 13 Aug 2018
 

Abstract

The assembly line balancing problem can completely vary from one production line to the other. This paper deals with a realistic assembly line for the automotive industry inspired by Fiat Chrysler Automotive in North America and Parskhodro in Iran (both large-scale automotive companies). This problem includes some specific requirements that have not been studied in the literature. For example, the assembly line is five-sided, and workers can move along these sides. Due to the limited workspace, all the sides cannot work simultaneously at one station. First, a mixed integer linear programming model is proposed for the problem. Then, the model is improved to have a tighter linear relaxation. Moreover, an effective logic-based Benders’ decomposition algorithm is developed. After careful analysis of problem’s structure, three propositions are introduced. The master problem is well restricted by eight valid inequalities. Two different sub-problem types are defined to extract more information from the master problem’s solution. In this case, the algorithm adds effective cuts that reduce the solution space to the extent possible at each iteration. Thus, the number of iterations is significantly cut down. The performance of the model and algorithm, as well as improvement made on both, is evaluated.

Acknowledgements

The authors are grateful to the Research Deputy of Kharazmi University for their support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada [grant number 811008].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.