484
Views
10
CrossRef citations to date
0
Altmetric
Articles

Cascade neural network algorithm with analytical connection weights determination for modelling operations and energy applications

, ORCID Icon, &
Pages 7094-7111 | Received 12 Sep 2019, Accepted 26 Apr 2020, Published online: 16 Jun 2020
 

Abstract

The performance and learning speed of the Cascade Correlation neural network (CasCor) may not be optimal because of redundant hidden units’ in the cascade architecture and the tuning of connection weights. This study explores the limitations of CasCor and its variants and proposes a novel constructive neural network (CNN). The basic idea is to compute the input connection weights by generating linearly independent hidden units from the orthogonal linear transformation, and the output connection weights by connecting hidden units in a linear relationship to the output units. The work is unique in that few attempts have been made to analytically determine the connection weights on both sides of the network. Experimental work on real energy application problems such as predicting powerplant electrical energy, predicting seismic hazards to prevent fatal accidents and reducing energy consumption by predicting building occupancy detection shows that analytically calculating the connection weights and generating non-redundant hidden units improves the convergence of the network. The proposed CNN is compared with that of the state-of-the-art machine learning algorithms. The work demonstrates that proposed CNN predicts a wide range of applications better than other methods.

Acknowledgment

The work described in this paper was supported by a grant from the National Natural Science Foundation of China (Grant No. 71901052).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Natural Science Foundation of China: [Grant Number 71901052].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.