144
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

A learning automata-based algorithm for determination of the number of hidden units for three-layer neural networks

&
Pages 101-118 | Received 05 Nov 2003, Accepted 16 Apr 2008, Published online: 22 Jan 2009
 

Abstract

There is no method to determine the optimal topology for multi-layer neural networks for a given problem. Usually the designer selects a topology for the network and then trains it. Since determination of the optimal topology of neural networks belongs to class of NP-hard problems, most of the existing algorithms for determination of the topology are approximate. These algorithms could be classified into four main groups: pruning algorithms, constructive algorithms, hybrid algorithms and evolutionary algorithms. These algorithms can produce near optimal solutions. Most of these algorithms use hill-climbing method and may be stuck at local minima. In this article, we first introduce a learning automaton and study its behaviour and then present an algorithm based on the proposed learning automaton, called survival algorithm, for determination of the number of hidden units of three layers neural networks. The survival algorithm uses learning automata as a global search method to increase the probability of obtaining the optimal topology. The algorithm considers the problem of optimization of the topology of neural networks as object partitioning rather than searching or parameter optimization as in existing algorithms. In survival algorithm, the training begins with a large network, and then by adding and deleting hidden units, a near optimal topology will be obtained. The algorithm has been tested on a number of problems and shown through simulations that networks generated are near optimal.

Acknowledgement

The authors thank the reviewers for their very helpful comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,413.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.