49
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Non-preemptible last section assignment for reducing feedback latency in real-time control systems

&
Pages 479-495 | Received 03 Feb 2006, Accepted 12 Sep 2008, Published online: 07 May 2009
 

Abstract

A real-time control system design procedure consists of the controller design stage and the implementation stage. In the controller design stage, various digital control theories are used with assumptions, such as synchronous sampling, no sampling jitter and negligible feedback latency (latency from sensing to actuation). However, in the implementation stage, multiple control tasks are usually scheduled on a processor, which creates a finite sampling period, varying feedback latency and sampling jitter, and therefore the controller's performance is degraded. In this article, we investigate the relationship between control performance and timing parameters. In the course of this investigation, we found that the feedback latency is the dominant factor affecting control performance. In addition, we propose a rate monotonic (RM) scheduler with non-preemptible last section algorithm, which can reduce the feedback latency considerably. The proposed algorithm provides better control performance than a preemptive RM scheduler, in most cases. The effectiveness of the proposed algorithm is shown in illustrative examples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,413.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.