122
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Identification of filter management strategy in fluid power systems under uncertainty: an interval-fuzzy parameter integer nonlinear programming method

, , , &
Pages 429-448 | Received 03 Jun 2009, Accepted 25 Nov 2009, Published online: 26 Nov 2010
 

Abstract

An interval-fuzzy integer nonlinear programming (IFINP) method is developed for the identification of filter allocation and replacement strategies in a fluid power system (FPS) under uncertainty. It can handle uncertainties expressed as interval-fuzzy values that exist in the left- and right-hand sides of constraints as well as in the objective function. The developed method is applied to a case of planning filter allocation and replacement strategies under uncertainty for a FPS with a single circuit. A piecewise linearisation approach is used to convert the nonlinear problem of FPS into a linear one. The generated fuzzy solutions will be used to analyse and interpret the multiple decision alternatives under various system conditions, and thus help decision-makers to make a compromise among the system contamination level, system cost, satisfaction degrees and system-failure risks under different contaminant ingression/generation rates. The results demonstrate that the suction and return filters can effectively reduce the contamination level associated with a low system cost, but the FPS will take lots of failure risk when the contaminant ingression/generation rate is high; and the combination of suction and pressure filters can bring the lowest system cost with more security instead. Furthermore, comparisons for the optimised solutions are made among IFINP, interval-parameter integer nonlinear programming and deterministic linear programming also. Generally, the IFINP method can effectively reduce the total design and operation cost of the filtration system when contaminants ingression/generation rate is high, and it could be extended to the lubricating system.

Acknowledgements

This research was funded by the Natural Science Foundations of China (Nos 50675074 and 50775081), National High-tech R&D (863) Programme (No. 2006AA09Z238), NCET of State Education Ministry (No. NCET-07-0330) and PHR (IHLB) 20090203. The authors are grateful to the editor and the anonymous reviewers for their insightful and helpful comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,413.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.