192
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Distributed density estimation in sensor networks based on variational approximations

&
Pages 1445-1457 | Received 28 Aug 2010, Accepted 31 Dec 2010, Published online: 20 Apr 2011
 

Abstract

This article presents a peer-to-peer (P2P) distributed variational Bayesian (P2PDVB) algorithm for density estimation and clustering in sensor networks. It is assumed that measurements of the nodes can be statistically modelled by a common Gaussian mixture model. The variational approach allows the simultaneous estimate of the component parameters and the model complexity. In this algorithm, each node independently calculates local sufficient statistics first by using local observations. A P2P averaging approach is then used to diffuse local sufficient statistics to neighbours and estimate global sufficient statistics in each node. Finally, each sensor node uses the estimated global sufficient statistics to estimate the model order as well as the parameters of this model. Because the P2P averaging approach only requires that each node communicate with its neighbours, the P2PDVB algorithm is scalable and robust. Diffusion speed and convergence of the proposed algorithm are also studied. Finally, simulated and real data sets are used to verify the remarkable performance of proposed algorithm.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,413.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.