61
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Contact between a smooth microsphere and an anisotropic rough surface

, &
Pages 749-776 | Published online: 08 Sep 2010
 

This article discusses the effects of asperities on elastic and adhesive contact between a smooth sphere and a rough surface. Two numerical methods are introduced: an asperity-superposition method and a direct-simulation method. In the first method, geometric parameters such as asperity heights, orientations, and radii of curvature are identified by a least-squares regression of neighboring surface heights measured using an atomic force microscope. The rough surface is reconstructed by the superposition of these asperities. The modeling of adhesive and elastic contacts begins with the modeling of a single parabolic-shaped asperity contact. A generalized JKR model for an arbitrary parabola is developed to suit this purpose. The contact between the rough surface (represented by the supposition of parabolic-shaped asperities) and the sphere consequently is modeled bythe mapping and integration of individual asperity contacts. In the second method, pure-elastic contact is modeled by half-space elastic theory. A contact-search algorithm is used to find solutions on the displacement and the contact-pressure distribution that satisfy both the load-displacement equation and the contactboundary conditions. Results from both methods are compared to reveal the effects of asperities on adhesion and elastic-contact pressure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.