194
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Electrostatic and van der Waals Interactions on the Adhesion of Spherical 7 µm Particles

, &
Pages 245-269 | Received 10 May 2004, Accepted 03 Nov 2004, Published online: 04 Sep 2006
 

ABSTRACT

The force needed to detach spherical particles having a number average diameter of 7.1 μm from a polymeric, photoconducting substrate was determined by ultracentrifugation. In the absence of any release agents applied to the substrate, it was found that only a small fraction of the particles could be removed from the substrate even at the highest centripetal accelerations (354,000 g). However, when the substrate was coated with a thin layer of a release aid (zinc stearate), the force needed to separate the particles from the substrate was greatly reduced, thereby allowing the detachment force to be determined. Under these conditions, it was found that the release force varied with the square of the particle charge-to-mass ratio. Moreover, it was also found by extrapolation that the detachment force at zero charge, corresponding to the residual van der Waals interactions, was finite. These results suggest that both van der Waals and electrostatic interactions affect the adhesion of particles and, for micrometer-sized particles, electrostatic forces can become dominant under some circumstances. Conversely, the large increase in the adhesion of the particles to the substrate, in the absence of a good release agent, suggests that van der Waals forces would often dominate adhesive interactions of particles in this size range.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.