233
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Analysis and Simulation of the Failure Characteristic of a Single Leg Bending Joint with a Micro-Patterned Surface

, , , , , & show all
Pages 826-841 | Received 08 Jun 2010, Accepted 05 Jan 2011, Published online: 30 Aug 2011
 

Abstract

The interface characteristic influences the strength of the adhesive joints. For this reason, there have been studies to improve the strength of the adhesive joints using various surface treatment methods. One of these methods, mechanical interlocking by surface roughness, has been known as an effective method but an analysis of the roughness effect is not easy because the roughness profile such as height, shape, and density of peaks and valleys by sandblasting, sandpaper or etching is random.

In this paper, micro-patterns on a bonded surface of a steel substrate were fabricated then single leg bending joints with carbon fiber reinforced polymer (CFRP) and steel were manufactured by a co-curing process. The mechanical interlocking effect was analyzed with three-point bending tests of single leg bending joints. Experimental results show that the mechanical interlocking effect leads to material damage and energy absorption, and complicated failure characteristics occur due to the micro-patterned surface. A cohesive zone model was introduced to simulate the single leg bending joints with the micro-patterned interface. A finite element analysis was performed to predict the failure load and load-displacement curve of the single leg bending joints with the micro-patterned surface and numerical results were compared with the experimental results. Failure loads obtained by the numerical results predicted the experimental ones with a relative error of 10%.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009-0083647).

Notes

Presented in part at the 4th International Conference on Advanced Computational Engineering and Experiments (ACE-X 2010), Paris, France, 8–9 July 2010.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.