75
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Disk-Specimen Thickness Does Not Influence the Push-Out Bond Strength Results Between Fiber Post and Root Dentin

, &
Pages 213-223 | Received 08 Apr 2011, Accepted 05 Dec 2011, Published online: 08 Mar 2012
 

Abstract

This study evaluated the effect of different thickness of disk-shaped specimens on the push-out bond strength test. Eighteen lower bovine teeth were sectioned (20 mm) and prepared (15 mm) with the same post system drill (Light Post® #1, Schaumburg, IL, Bisco, USA). The apical third of each specimen was embedded in a plastic matrix filled with an acrylic resin (Dencrilay™, Dencril, Sao Paulo, Brazil). The posts were cleaned with alcohol, silanated (ProSil®, FGM, Joenville, SC, Brazil) and cemented with the RelyX™ U100 (3 M ESPE, St. Paul, MN, USA). Each specimen was sectioned into three pieces of differing thicknesses (1, 2, and 4 mm). These disk-samples were allocated into 3 groups (n = 18) and subjected to push-out testing. One-way ANOVA showed no influence of the specimen thickness on the results (p = 0.842). No correlation was observed between thickness and push-out bond strength (Pearson Correlation, r2 = 0.0688; P = 0.6209). The push-out bond strength test was not affected by the thickness of the disk-specimens.

Notes

*n = 18/group.

*Same letters in the columns indicate similar statistical results.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.