509
Views
40
CrossRef citations to date
0
Altmetric
Articles

Influence of mechanical surface treatment on fatigue life of bonded joints

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 599-612 | Received 18 Sep 2015, Accepted 17 Nov 2015, Published online: 20 Jul 2016
 

ABSTRACT

Adhesively bonded joints can support a longer fatigue life if compared to conventional joining techniques, provided that a set of requirements is fulfilled. One of the most important requirements is the mechanical preparation of the bonded joint surface, which improves the joint interface adhesion. The aim of this work is to investigate the influence of surface roughness of mild steel substrates on fatigue behavior in adhesive bonded plates. To accomplish this objective, three different surface treatments were used on A36 steel substrate specimens, namely sand blasting, grit blasting, and bristle blasting. Bonded plate specimens, using end-notched flexure format, with a thin adhesive epoxy layer were manufactured and tested, under mode II loading condition, in both static and dynamic tests. The results confirm the importance of surface treatment of the substrate on the fatigue life, confirming that adhesively bonded joints have significant performance differences when subjected to static and dynamic loadings.

Funding

The authors would like to acknowledge the support of the Brazilian Research Agencies CNPQ, CAPES and FAPERJ.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.