146
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A modified form of Pastewka–Robbins criterion for adhesion

&
Pages 155-165 | Received 26 Oct 2016, Accepted 03 Feb 2017, Published online: 21 Mar 2017
 

ABSTRACT

Recent numerical investigation on self-affine Gaussian surfaces by Pastewka and Robbins (PR) has led to a criterion for “stickiness” based on when the slope of the (repulsive) area–load relationship appears to become vertical in numerical simulations at a ratio of contact area to nominal one (rather arbitrarily) fixed to 1%. Since pull-off and slope of the area–load are two faces of the same medal, a simple check of the results in terms of pull-off shows that PR have many more data which fail their criterion than the ones that satisfy it, and this is evident even in their own figures. As a small improvement, a proposal to modify the criterion to better fit their own data is put forward. However, the pull-off decay seems rather exponential so that it is unclear if their slope criterion really corresponds to a “thermodynamic” limit, and consequently their conclusion that stickiness should depend only on slopes and curvature may be an artifact of their assumption of defining a secant at 1% contact area ratio and of using truncated potentials, rather than a true important property of rough contact. Both the PR criterion and the present modified one imply that for fractal dimension , stickiness should increase with resolution, so the problem of truncation of the spectrum seems ill-defined: in fact, PR define rigid self-affine surfaces with rather smooth and well-defined slopes, and not a realistic atomic roughness as first studied by Luan and Robbins.

Funding

A. P. is thankful to the DFG (German Research Foundation) for funding the project HO 3852/11-1.

Notes

1 For an isotropic surface, the sum of two orthogonal components of the gradient should be summed and being uncorrelated, this gives .

2 Although there is clear indication that the symbols have been inverted.

Additional information

Funding

A. P. is thankful to the DFG (German Research Foundation) for funding the project HO 3852/11-1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.