464
Views
10
CrossRef citations to date
0
Altmetric
Research Article

A study on the effects of nanostructure reinforcement on the failure load in adhesively bonded joints after the subjected to fully reversed fatigue load

, , & ORCID Icon
Pages 1972-1997 | Received 11 May 2021, Accepted 20 Jun 2021, Published online: 01 Jul 2021
 

ABSTRACT

Today, adhesively bonded joints are frequently used in the space and aviation industries. Joints used in these sectors are generally subject to dynamic loads due to environmental factors. This study experimentally and numerically investigated the static tensile loads of adhesively bonded joints after fully reversed (combination of tensile and compressive) fatigue loading where nanoadhesives – obtained by adding carbon nanostructures into aerospace grade structural adhesive – were used to bond the joints. Single lap joint specimens were produced using a nanocomposite adhesive obtained by adding 1 wt. % graphene, 1 wt. % carbon nanotubes-COOH and 1 wt. % fullerene C60 nanostructures to a DP460 structural adhesive. AA2024-T3 aluminum alloy and carbon fiber-reinforced composites (CFRCs) with a plain weave fabric (0/90°) were used as adherend materials. First, static tensile tests were applied to these joints to obtain their failure loads and then fully reversed sinusoidal fatigue tests were applied under a constant load amplitude, a frequency of 20 Hz and a load ratio of R = −1. Considering the failure loads obtained from the static tensile tests, 106 fully reversed fatigue loading cycles were applied – which was accepted as an infinite life – at 400 N, 800 N and 1200 N load levels.

The static tensile failure loads and energy values absorbed of these joints were obtained and the change in the failure loads and energy values absorbed of the joints subjected to fatigue was investigated. The static failure loads of aluminum joints bonded with nanoadhesive and subjected to fully reversed fatigue loading increased by approximately 5% to 17%, depending on the nanostructure type added to the adhesive. Moreover, it was observed that there was an increase in loading of approximately 3% to 20% for the nanostructure reinforced joints obtained by using CFRCs with [0/90]6 stacking sequence.

Acknowledgements

This study was financially supported by The Scientific and Technological Research Council of Turkey–TUBITAK through the Project no. 119M666.

Additional information

Funding

This work was supported by the TÜBİTAK [Project no. 119M666.].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.