129
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of reinforcement phases and post-cure temperature on adhesively bonded hybrid patch repair in indented glass/epoxy composite laminates

, , , , , ORCID Icon & show all
Pages 2031-2051 | Received 29 Aug 2022, Accepted 23 Dec 2022, Published online: 23 Jan 2023
 

ABSTRACT

This paper focuses on the experimental investigation on the effect of different fiber reinforcement phases and post-cure temperature to improve the strength recovery of adhesively bonded patch repair in glass/epoxy composite laminates. The repair was performed on the site of damaged region in the laminates by using various configurations of patches such as chopped glass (CG), chopped glass/carbon (CGC), chopped glass/kevlar (CGK), ply-by-ply glass (PG), ply-by-ply glass/carbon (PGC), ply-by-ply glass/kevlar (PGK), stitched glass (SG), stitched glass/carbon (SGC), and stitched glass/kevlar (SGK). The result reveals that the SGK hybrid patch repaired laminates offered a strength recovery by 101.5% as compared with damaged laminates. Further, the SGK hybrid patch was subjected to post-cure temperatures of 50°C, 70°C, 90°C, and 110°C which were considered based on the glass transition temperature (Tg) of glass/epoxy laminates. The result shows that the SGK hybrid patch with a post-cured temperature of 50°C has equal strength with virgin laminates and the strength recovery was improved by 112.9% as compared with damaged laminates. This study concluded that the adhesively bonded hybrid patch repair with a post-cure temperature of 50°C can be used for various fiber-reinforced polymer (FRP) industries to repair laminated composites.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Dipen Kumar, R.; Durgesh, D. P.; Pradeep, L. M.; Emanoil, L. Fiber-reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers. 2019, 11(10), 1667. DOI: 10.3390/polym11101667.
  • Jayababu, A.; Arumugam, V.; Rajesh, B.; Suresh Kumar, C. Investigation of Indentation Damage Resistance on Normal and Inclined Plane of glass/epoxy Composite Laminates Using Acoustic Emission Monitoring. J. Compos. Mater. 2020, 54(21), 2953–2964. DOI: 10.1177/0021998320906864.
  • Campilho, R. D. S. G.; Mfsf, D. M.; Domingues, J. J. M. S. Modelling Single and double-lap Repairs on Composite Materials. Compos. Sci. Technol. 2005, 65(13), 1948–1958. DOI: 10.1016/j.compscitech.2005.04.007.
  • Budhe, S.; Banea, M. D.; de Barros, S.; da Silva, L. F. M. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2016, 72, 32–40.
  • Viet-Hoai, T.; Byeong-Su, K.; Rene, R.; Jin-Hwe, K. Cohesive Zone Method for Failure Analysis of Scarf patch-repaired Composite Laminates under Bending Load. Compos. Struct. 2019, 222, 110895. DOI: 10.1016/j.compstruct.2019.110895.
  • ASM International. Composites, ASM Handbook, 2001.
  • Chun, H. W.; Andrew, J. G.; Adrian, C. O.; Andrew, R. Residual Strength of Composite Laminates Containing Scarfed and straight-sided Holes. Compos. Part A Appl. Sci. Manuf. 2011, 42(12), 1951–1961. DOI: 10.1016/j.compositesa.2011.08.020.
  • Sofia, P.; Costas, S.; Wieslaw, J.; Staszewski. Structural Health Monitoring of Composite Scarf Repairs with Guided Waves. Key Engineering Materials 2012, 518: 328–337.
  • Bachir, B. B.; Belhouari, M.; Serier, B. Computation of the Stress Intensity Factors for Repaired Cracks with Bonded Composite Patch in Mode I and Mixed Mode. Compos. Struct. 2002, 56(4), 401–406. DOI: 10.1016/S0263-8223(02)00023-5.
  • Coelho, S. R. M.; Reis, P. N. B.; Ferreira, J. A. M.; Pereira, A. M. Effects of External Patch Configuration on Repaired Composite Laminates Subjected to multi-impacts. Compos. Struct. 2017, 168, 259–265. DOI: 10.1016/j.compstruct.2017.02.069.
  • Sirvan, M.; Yousefi, M.; Khazaei, M. A Review on Composite Patch Repairs and the Most Important Parameters Affecting Its Efficiency and Durability. J. Reinf. Plast. Compos. 2020, 40(1−2), 3–15.
  • Pengcheng, C.; Xiao-Jing, G.; Shahram, A.; Xinran, X. Experimental Observation of Tensile Behavior of Patch Repaired Composites. Polym. Test. 2014, 34, 146–154. DOI: 10.1016/j.polymertesting.2014.01.007.
  • Bachir, B. B.; Oudad, W.; Albedah, A.; Benyahia, F.; Belhouari, M. Effects of the Adhesive Disband on the Performances of Bonded Composite Repairs in Aircraft Structures. Mater. Des. 2012, 37, 89–95. DOI: 10.1016/j.matdes.2011.12.028.
  • Alves, D. L.; Campilho, R. D. S. G.; Moreira, R. D. F.; Silva, F. J. G.; da Silva, L. F. M. Experimental and Numerical Analysis of Hybrid adhesively-bonded Scarf Joints. Int. J. Adhes. Adhes. 2018, 83, 87–95. DOI: 10.1016/j.ijadhadh.2018.05.011.
  • Karthikeyan, R.; Karthik, M. K.; Elumalai, N.; Suresh Kumar, C. Optimization of Pitch Distance of Kevlar Thread Stitching in Chopped GFRP Composite Laminates. AIP Conf. Proc. 2020, 2271, 030021.
  • Daniel, D. A.; Rani, S. W.; Andrew, L. E.; Stephen, C. B.; Dawn, J. C. Influence of Stitching on the out-of-plane Behavior of Composite Materials - A Mechanistic Review. J. Compos. Mater. 2021, 55(23), 3307–3321. DOI: 10.1177/00219983211009290.
  • Denis Cartie, D. R.; Ivana Partridge, K. Delamination Behaviour of Z - Pinned Laminates. Eur. Struct. Integr. Soc. 2000, 27, 27–36.
  • Ranatunga, V.; Stephen Clay, B. Cohesive Modeling of Damage Growth in z-pinned Laminates under mode-I Loading. J. Compos. Mater. 2012, 46(26), 3269–3283.
  • Mouritz, A. P. Review of z-pinned Composite Laminates. Compos. Part A Appl. Sci. Manuf. 2007, 38(12), 2383–2397. DOI: 10.1016/j.compositesa.2007.08.016.
  • Bradley, L. D.; Travis, B. A.; Ryan, E. P. Processing and Characterization of Needled Carbon Composites. Proceedings of the 2015 Composites and Advanced Materials Expo (CAMX). Oct 26−29 2015; Dallas, TX, Arlington (VA).
  • Sam, H. H.; Anthony, W. M. Quasi-static Mode II Fracture Tests and Simulations of Z-pinned Woven Composites. Eng. Fract. Mech. 2014, 126, 155–165. DOI: 10.1016/j.engfracmech.2014.05.002.
  • Mouritz, A. P.; Cox, B. N. A Mechanistic Interpretation of the Comparative in-plane Mechanical Properties of 3D Woven Stitched and Pinned Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41(6), 709–728. DOI: 10.1016/j.compositesa.2010.02.001.
  • Tan, K. T.; Yoshimura, A.; Watanabe, N.; Iwahori, Y.; Ishikawa, T. Further Investigation of Delamination Reduction Trend for Stitched Composites. Compos. Sci. Technol. 2015, 118, 141–153. DOI: 10.1016/j.compscitech.2015.08.019.
  • Tarfaoui, M.; Nachtane, M.; El Moumen, A. Energy Dissipation of Stitched and Unstitched Woven Composite Materials during Dynamic Compression Test. Compos. B Eng. 2019, 167, 487–496. DOI: 10.1016/j.compositesb.2019.03.023.
  • Velmurugan, R.; Solaimurugan, S. Improvements in Mode I Interlaminar Fracture Toughness and in-plane Mechanical Properties of Stitched glass/polyester Composites. Compos. Sci. Technol. 2006, 67(1), 61–69. DOI: 10.1016/j.compscitech.2006.03.032.
  • Mouritz, A. P. Ballistic Impact and Explosive Blast Resistance of Stitched Composites. Compos. B Eng. 2001, 32(5), 431–439. DOI: 10.1016/S1359-8368(01)00015-4.
  • Tan, K. T.; Watanabe, N.; Iwahori, Y. Effect of Stitch Density and Stitch Thread Thickness on low-velocity Impact Damage of Stitched Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41(12), 1857–1868. DOI: 10.1016/j.compositesa.2010.09.007.
  • Tan, K. T.; Watanabe, N.; Iwahori, Y.; Ishikawa, T. Effect of Stitch Density and Stitch Thread Thickness on Compression after Impact Strength and Response of Stitched Composites. Compos. Sci. Technol. 2012, 72(5), 587–598. DOI: 10.1016/j.compscitech.2012.01.003.
  • Zhao, N.; Rodel, H.; Herzberg, C.; Gao, S. L.; Krzywinski, S. Stitched glass/PP Composite. Part I: Tensile impact properties. Compos Part A: Appl. Sci. Manuf. 2009, 40(5), 635–643.
  • Darwish, F. H.; Shivakumar, K. N. Experimental and Analytical Modeling of Scarf Repaired Composite Panels. Mech. Adv. Mat. Struct. 2014, 21(3), 207–212. DOI: 10.1080/15376494.2013.834096.
  • Baig, Y.; Cheng, X.; Junaid, H. H.; Abbas, M.; Ali Khan, W. Failure Mechanisms of scarf-repaired Composite Laminates under Tensile Load. J. Braz. Soc. Mech. Sci. Eng. 2016, 38(7), 2069–2075. DOI: 10.1007/s40430-015-0460-z.
  • Djokic, D.; Johnston, A.; Rogers, A.; Lee-sullivan, P.; Mrad, N. Residual Stress Development during the Composite Patch Bonding Process: Measurement and Modeling. Compos. Part A Appl. Sci. Manuf. 2002, 33(2), 277–288. 10.1016/S1359-835X(01)00083-5.
  • Hosur, M. V.; Adbullah, M.; Jeelani, S. Studies on the low-velocity Impact Response of Woven Hybrid Composites. Compos. Struct. 2004, 67(3), 253–262. DOI: 10.1016/j.compstruct.2004.07.024.
  • Silvio, L. V.; Sandro, G.; de Oliveira, V. G.; Eliana, M. S. de Carvalho Cunha FG. Evaluation of the Mechanical Behavior of Epoxy Composite Reinforced with Kevlar Plain Fabric and glass/kevlar Hybrid Fabric. Compos. B Eng. 2015, 70, 1–8. DOI: 10.1016/j.compositesb.2014.09.040.
  • Yentl, S.; Robert, M.; Ignaas, V.; Larissa, G. The Effect of Fibre Dispersion on Initial Failure Strain and Cluster Development in Unidirectional carbon/glass Hybrid Composites. Compos. Part A Appl. Sci. Manuf. 2015, 69, 279–287. DOI: 10.1016/j.compositesa.2014.12.001.
  • Isa Emami, T.; Adnan, K.; Jamal, S. M.; Cagdas, A.; Mehmet, Y. Experimental and Numerical Investigation on Fracture Behavior of glass/carbon Fiber Hybrid Composites Using Acoustic Emission Method and Refined Zigzag Theory. Compos. Struct. 2019, 223, 110971. DOI: 10.1016/j.compstruct.2019.110971.
  • Katnam, K. B.; Da Silva, L. F. M.; Young, T. M. Bonded Repair of Composite Aircraft Structures: A Review of Scientific Challenges and Opportunities. Prog. Aerosp. Sci. 2013, 61, 26–42. DOI: 10.1016/j.paerosci.2013.03.003.
  • Alfred, C.; George, S. Curing of Epoxy Matrix Composites. J. Compos. Mater. 1983, 17(2), 135–169. DOI: 10.1177/002199838301700204.
  • Charlotte, C.; Romain, L.; Rodolphe, S.; Laurent, F.; Patrick, I. Effect of Post Curing Temperature on Mechanical Properties of a Flax Fiber Reinforced Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 171–179. DOI: 10.1016/j.compositesa.2017.12.029.
  • Bazli, M.; Abolfazli, M. Mechanical Properties of Fibre Reinforced Polymers under Elevated Temperatures: An Overview. Polymers. 2020, 12(11), 2600. DOI: 10.3390/polym12112600.
  • Shruthi, K.; Saravanakumar, K.; Arumugam, V.; Kumar, C. S. Effect of Patch Hybridisation on Indentation Resistance and Residual Performance of Patch Repaired glass/epoxy Laminates Using Acoustic Emission Monitoring. Nondestr. Test. Eval. 2021, 36(5), 528–545. DOI: 10.1080/10589759.2020.1834556.
  • Soutis, C.; Duan, D. M.; Goutas, P. Compression Behavior of CFRP Laminates Repaired with Adhesively Bonded External Patches. Compos. Struct. 1999, 45(4), 289–301. DOI: 10.1016/S0263-8223(99)00033-1.
  • Suresh Kumar, C.; Arumugam, V.; Santulli, C. Characterization of Indentation Damage Resistance of Hybrid Composite Laminates Using Acoustic Emission Monitoring. Compos. B Eng. 2017, 111, 165–178. DOI: 10.1016/j.compositesb.2016.12.012.
  • Andrew, J.; Arumugam, V.; Ramesh, C.; Poorani, S.; Santulli, C. Quasi-static Indentation Properties of Damaged glass/epoxy Composite Laminates Repaired by the Application of intra-ply Hybrid Patches. Polym. Test. 2017, 61, 132–145. DOI: 10.1016/j.polymertesting.2017.05.014.
  • Kumar, C. S.; Saravanakumar, K.; Prathap, P.; Prince, M.; Madhu, S.; Kumaran, P. Effect of the Reinforcement Phase on Indentation Resistance and Damage Characterization of glass/epoxy Laminates Using Acoustic Emission Monitoring. Adv. Mater. Sci. Eng. 2021, 5768730, 1–11.
  • Andrew, J.; Arumugam, V.; Santulli, C. Effect of post-cure Temperature and Different Reinforcements in Adhesive Bonded Repair for Damaged glass/epoxy Composites under Multiple quasi-static Indentation Loading. Compos. Struct. 2016, 143, 63–74. DOI: 10.1016/j.compstruct.2015.10.037.
  • Ramasamy, N.; Arumugam, V.; Suresh Kumar, C. Effect of Fiber Surface Modifications on the Interfacial Adhesion in Kevlar Fiber Reinforced Polymer Composites. J. adhes. Sci. Technol. 2022, 36(1), 54–74. DOI: 10.1080/01694243.2021.1911205.
  • Jackson, S. T.; Samanta, S. Characterization of Kevlar Fiber and Its Composites: A Review. Mater. Today Proc. 2015, 2(4−5), 1381–1387.
  • Dransfield, K.; Baillie, C.; Mai, Y. W. Improving the Delamination Resistance of CFRP by Stitching: A Review. Compos. Sci. Technol. 1994, 50(3), 305–317. https://doi.org/10.1016/0266-3538(94)90019-1
  • Mouritz, A. P.; Cox, B. N. A Mechanistic Approach to the Properties of Stitched Laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31(1), 1–27. DOI: 10.1016/S1359-835X(99)00056-1.
  • Cholakara, M.; Jang, B. Z.; Wang, C. Z. Deformation and Failure Mechanisms in 3D Composites. In proceedings of the 34th International Symposium, Reno, Nevada, United States of America. 8−11 May 1989: 2153–2160.
  • Surendra, K. M.; Neeti, S.; Ray, B. C. Mechanical Behavior of glass/epoxy Composites at Liquid Nitrogen Temperature. J. Reinf. Plast. Compos. 2008, 27(9), 937–944. DOI: 10.1177/0731684407085877.
  • Kumar, C. S.; Fotouhi, M.; Saeedifar, M.; Arumugam, V. Acoustic Emission Based Investigation on the Effect of Temperature and Hybridization on Drop Weight Impact and post-impact Residual Strength of Hemp and Basalt Fibres Reinforced Polymer Composite Laminates. Compos. B Eng. 2019, 173, 106962. DOI: 10.1016/j.compositesb.2019.106962.
  • Maranan, G. B.; Manalo, A. C.; Karunasena, W.; Benmokrane, B.; Lutze, D. Flexural Behaviour of Glass Fibre Reinforced Polymer (GFRP) Bars Subjected to Elevated Temperature. In Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), Byron Bay, Australia. 9−12 December 2014

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.