1,291
Views
120
CrossRef citations to date
0
Altmetric
Research papers

Unsteady friction and visco-elasticity in pipe fluid transients

, , &
Pages 354-362 | Accepted 31 Dec 2010, Published online: 11 Jun 2010
 

Abstract

The current waterhammer models coupled with friction models cannot adequately represent the pressure wave attenuation observed in real-world pipe systems, because the pressure wave damping is affected by additional effects not accounted for. One such effect is pipe visco-elasticity from the material behaviour of pipe-wall to be investigated herein. The numerical results indicate that the pressure head attenuation attributable to unsteady friction is comparable to the visco-elastic effect during the initial transient stage, while the visco-elastic effect becomes dominant both in terms of damping and phase shift at later stages. An analytical analysis shows that the visco-elastic effect is more critical if the visco-elastic retardation time is less than the wave travel time along the entire pipeline length. In addition, it is demonstrated that the visco-elastic term in waterhammer models is wrongly referred to in the literature as energy dissipation instead of energy transfer between fluid and pipe-wall by the work done by the pressure force.

Notes

Additional information

Notes on contributors

Mohamed Ghidaoui

IAHR Member

Pedro J. Lee

IAHR Member

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.