636
Views
11
CrossRef citations to date
0
Altmetric
Research papers

Velocity profile approximations for two-dimensional potential open channel flow

&
Pages 645-655 | Received 31 Jan 2013, Accepted 30 Jun 2014, Published online: 04 Jul 2013
 

Abstract

Two-dimensional flow over channel transitions including round-crested weirs or slope changes is described by the potential flow equations. An approximation widely used in hydraulic engineering relates to the simplification of the 2D potential flow problem using a 1D approach, introducing a suitable hypothesis for the vertical variation of the velocity components, namely the Boussinesq approximation. The current knowledge cannot answer whether this approximation can be used for highly-curved flows. Furthermore, there is no information as to the order of accuracy in the Boussinesq approximation of the velocity functions. In this work, the potential velocity profiles originating from the Boussinesq approximation are tested for highly-curved flows using a new 2D solution. Furthermore, the second- and third-order accurate approximations for u are systematically assessed to study its accuracy behaviour. The implications of a linear vertical velocity profile are particularly addressed. A formulation in curvilinear coordinates leading to the widely used free-vortex-type velocity profile is compared with the 2D results and the Cartesian Boussinesq equations.

Acknowledgements

This research was supported by the Junta de Andalucia, Spain (research project P09-AGR-4782).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.