404
Views
7
CrossRef citations to date
0
Altmetric
Technical notes

The motion of entrapped air cavities in inclined ducts

&
Pages 814-819 | Received 15 Aug 2014, Accepted 05 Jun 2015, Published online: 25 Aug 2015
 

ABSTRACT

The paper reports a study of the water surface profile of an entrapped air cavity while emptying water in an initially filled inclined duct. A one-dimensional (1D) model, which consists of the continuity and momentum equations applicable for open channel flow, pipe flow and air–water interface flow, is developed based on the finite volume method. A pressure drop model is proposed to reproduce a better profile around the cavity front, with a particular focus on air pressure changes inside the confined cavity to simulate a kind of transient flow with an entrapped air cavity. In contrast to the previous studies, the application of the model shows that when the pressure drop is not considered and the air pressure is not changed, the confined cavity soon vanishes. A comparison between the simulated and experimental results shows that the model is able to accurately reproduce the water surface profile of an entrapped air cavity while emptying inclined ducts.

Acknowledgements

The authors would like to thank the Associate Editor and the reviewers for their comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.