301
Views
6
CrossRef citations to date
0
Altmetric
Technical Note

Supercritical flow in bend with variable curvature radius

, , &
Pages 724-732 | Received 23 Mar 2017, Accepted 19 Jun 2018, Published online: 10 Oct 2018
 

ABSTRACT

In this study, a new variable curvature bend called the maximum probability bend was applied to supercritical flows. Based on the maximum probability bend, the geometric and mechanical continuity of supercritical flow were studied, and the regulation of its superelevation, that is, the water surface elevation difference between both sides in every cross section, was analysed. The hydraulic characteristics of both the maximum probability bend and the traditional fixed curvature bend were experimentally investigated. It was found that the flow transitioned stably between straight and curve reaches in the maximum probability bend. Furthermore, the superelevation is reduced by a maximum of 65% compared with that in the traditional fixed curvature bend. Data comparison indicated that the proposed theory agreed well with the experimental results in terms of superelevation and the bend apex position. It was concluded that the maximum probability bend performed much better than the traditional fixed curve bend in supercritical flow control.

Additional information

Funding

The authors acknowledge the financial support by the National Key Research and Development Program of China [grant numbers 2016YFC0401603, 2016YFE0122500].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.