305
Views
1
CrossRef citations to date
0
Altmetric
Research paper

Numerical modelling of levee breach with an improved slope-failure operator

, , &
Pages 333-345 | Received 26 Dec 2021, Accepted 06 Apr 2023, Published online: 30 May 2023
 

Abstract

A new slope-failure operator for bank sediment collapsing is proposed and tested. As compared to traditional operators that mainly depend on geometric parameters, the new operator considers the fact that collapsed sediments should firstly enter into the nearby water flow, and whether the collapsed sediments become part of the nearby bed should depend on the local flow and sediment conditions. Both the improved and traditional operators are implemented into the hydro-sediment-morphodynamic modelling framework. The model with these operators is applied to simulate experimental levee-breaching processes induced by overtopping flows. The model with the improved operator can produce numerical solutions (e.g. breaching shape, discharge) of much better accuracy (e.g. the RMSE for breaching discharge is 0.0024–0.0058 m³ s−1), as compared to the using of the traditional operator (e.g. the RMSE for breaching discharge is 0.0033–0.0087 m³ s−1).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research is supported by the National Natural Science Foundation of China (nos. 11772300; 12172331; 12272349).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.