150
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Layer-averaged modeling of two-dimensional turbidity currents with a dissipative-Galerkin finite element method Part I: Formulation and application example

Pages 339-362 | Received 05 Aug 1997, Published online: 13 Jan 2010
 

Abstract

A finite element technique has been applied to the layer-averaged equations describing a turbidity current which propagates two-dimensionally in deep ambient water. The governing equations form a hyperbolic system of partial differential equations, namely continuity and x- and y-momentum equations for the flow and mass conservation equation for sediment. The two-dimensional modeling of the layer-averaged equations with a finite element method has two important aspects; the dissipative algorithm and the front tracking technique. Since the standard Galerkin method yields spurious oscillations when applied to convection-dominated flows, the dissipative-Galerkin technique having a selective dissipation property is used. Also, in order to track the moving front accurately, a deforming grid generation technique based on the arbitrary Lagrangian-Eulerian approach is employed for the two-dimensional problem. The developed numerical procedure is applied to a decelerating-depositional turbidity current generated in the laboratory experiment by Luthi (1981). Timedependent profiles for the current thickness and layer-averaged velocity field and volumetric concentration are obtained. The relevant depositional structure by this underflow event is estimated by incorporating the double grid finite element method into the flow algorithm.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.