134
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Changes of Activation Energy during Deformation of Rubber

Pages 75-88 | Received 04 Oct 2009, Accepted 24 Nov 2009, Published online: 20 Nov 2010
 

Abstract

Based on a simple molecular model, a mechanism of rubber flow characterized by viscosity increasing with the reversible rubber-like deformation is proposed. It is associated with an activation energy of viscous flow that increases proportionally to an external stress due to the entropy elasticity of macromolecules. This increase of the activation energy for jumping of molecular-kinetic units of a polymer network into vacancies during the rubber deformation process is caused by an increasing resistance of the stretching macromolecular network due to the entropy nature of macromolecule deformation.

Acknowledgement

The author is very grateful to Prof. P. H. Geil for his careful reading of the manuscript and valuable comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.