271
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Aqueous Solution Properties of a Novel NonIonic, Amphiphilic Comb-Type Polyacrylamide

, , , &
Pages 1691-1704 | Received 26 May 2010, Accepted 04 Aug 2010, Published online: 26 Jul 2011
 

Abstract

Nowadays comb-type polyacrylamides are deemed to be the most promising oil-displacing agent in the field of enhanced oil recovery (EOR). We describe the synthesis of a nonionic, amphiphilic macromer (OPAE) with acrylic acid (AA) and t-octylphenoxypolyoxyehylene (OP) by an esterification reaction. The macromer was then copolymerized with acrylamide (AM) under a free radical initiator system and a comb-type modified polyacrylamide (MPAM) was obtained. The structures of OPAE and the MPAM were characterized by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (NMR) and dynamic laser light scattering. In order to compare with partially hydrolyzed polyacrylamide (HPAM), the aqueous solution of the MPAM had a higher apparent viscosity, especially in brine. We suggest that the reason was that the branched chains enhanced the rigidity of the MPAM, and made the molecules have a larger hydrodynamic radius, especially in brine, endowing the copolymer with excellent salt tolerance.

Acknowledgement

We acknowledge the State Key Scientific Special Project (2008ZX05011) of China for supporting this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.